Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Autophagy ; : 1-2, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2231443

RESUMEN

Upon entering host cells, ß-coronaviruses specifically induce generation of replication organelles (ROs) from the endoplasmic reticulum (ER) through their nonstructural protein 3 (nsp3) and nsp4 for viral genome transcription and replication. The most predominant ROs are double-membrane vesicles (DMVs). The ER-resident proteins VMP1 and TMEM41B, which form a complex to regulate autophagosome and lipid droplet (LD) formation, were recently shown to be essential for ß-coronavirus infection. Here we report that VMP1 and TMEM41B contribute to DMV generation but function at different steps. TMEM41B facilitates nsp3-nsp4 interaction and ER zippering, while VMP1 is required for subsequent closing of the paired ER into DMVs. Additionally, inhibition of phosphatidylserine (PS) formation by siPTDSS1 partially reverses the DMV and LD defects in VMP1 KO cells, suggesting that appropriate PS levels also contribute to DMV formation. This work provides clues to the mechanism of how host proteins collaborate with viral proteins for endomembrane reshaping to promote viral infection.

2.
Nat Commun ; 13(1): 4782, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1991594

RESUMEN

The emergence of heavily mutated SARS-CoV-2 variants of concern (VOCs) place the international community on high alert. In addition to numerous mutations that map in the spike protein of VOCs, expression of the viral accessory proteins ORF6 and ORF9b also elevate; both are potent interferon antagonists. Here, we present the crystal structures of Rae1-Nup98 in complex with the C-terminal tails (CTT) of SARS-CoV-2 and SARS-CoV ORF6 to 2.85 Å and 2.39 Å resolution, respectively. An invariant methionine (M) 58 residue of ORF6 CTT extends its side chain into a hydrophobic cavity in the Rae1 mRNA binding groove, resembling a bolt-fitting-hole; acidic residues flanking M58 form salt-bridges with Rae1. Our mutagenesis studies identify key residues of ORF6 important for its interaction with Rae1-Nup98 in vitro and in cells, of which M58 is irreplaceable. Furthermore, we show that ORF6-mediated blockade of mRNA and STAT1 nucleocytoplasmic transport correlate with the binding affinity between ORF6 and Rae1-Nup98. Finally, binding of ORF6 to Rae1-Nup98 is linked to ORF6-induced interferon antagonism. Taken together, this study reveals the molecular basis for the antagonistic function of Sarbecovirus ORF6, and implies a strategy of using ORF6 CTT-derived peptides for immunosuppressive drug development.


Asunto(s)
Transporte Activo de Núcleo Celular , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Proteínas Virales , Interferones/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Mensajero/metabolismo , Proteínas Virales/química
3.
J Cell Biol ; 221(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1960887

RESUMEN

ß-coronaviruses reshape host cell endomembranes to form double-membrane vesicles (DMVs) for genome replication and transcription. Ectopically expressed viral nonstructural proteins nsp3 and nsp4 interact to zipper and bend the ER for DMV biogenesis. Genome-wide screens revealed the autophagy proteins VMP1 and TMEM41B as important host factors for SARS-CoV-2 infection. Here, we demonstrated that DMV biogenesis, induced by virus infection or expression of nsp3/4, is impaired in the VMP1 KO or TMEM41B KO cells. In VMP1 KO cells, the nsp3/4 complex forms normally, but the zippered ER fails to close into DMVs. In TMEM41B KO cells, the nsp3-nsp4 interaction is reduced and DMV formation is suppressed. Thus, VMP1 and TMEM41B function at different steps during DMV formation. VMP1 was shown to regulate cross-membrane phosphatidylserine (PS) distribution. Inhibiting PS synthesis partially rescues the DMV defects in VMP1 KO cells, suggesting that PS participates in DMV formation. We provide molecular insights into the collaboration of host factors with viral proteins to remodel host organelles.


Asunto(s)
COVID-19 , Proteínas de la Membrana , SARS-CoV-2 , Compartimentos de Replicación Viral , Autofagia/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Orgánulos/metabolismo , Fosfatidilserinas , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/genética , Replicación Viral
4.
Cell Rep Med ; 2(11): 100448, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1492754

RESUMEN

Activation of nucleic acid sensing Toll-like receptors (TLRs) in B cells is involved in antiviral responses by promoting B cell activation and germinal center responses. In order to take advantage of this natural pathway for vaccine development, synthetic pathogen-like antigens (PLAs) constructed of multivalent antigens with encapsulated TLR ligands can be used to activate B cell antigen receptors and TLRs in a synergistic manner. Here we report a PLA-based coronavirus disease 2019 (COVID-19) vaccine candidate designed by combining a phage-derived virus-like particle carrying bacterial RNA as TLR ligands with the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein as the target antigen. This PLA-based vaccine candidate induces robust neutralizing antibodies in both mice and non-human primates (NHPs). Using a NHP infection model, we demonstrate that the viral clearance is accelerated in vaccinated animals. In addition, the PLA-based vaccine induces a T helper 1 (Th1)-oriented response and a durable memory, supporting its potential for further clinical development.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos B/inmunología , Vacunas contra la COVID-19/farmacología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Línea Celular , Femenino , Activación de Linfocitos , Macaca mulatta/inmunología , Masculino , Ratones , SARS-CoV-2/metabolismo
5.
Dev Cell ; 56(23): 3250-3263.e5, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1458566

RESUMEN

Viral entry and egress are important determinants of virus infectivity and pathogenicity. ß-coronaviruses, including the COVID-19 virus SARS-CoV-2 and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. Here, we show that SARS-CoV-2 ORF3a, but not SARS-CoV ORF3a, promotes lysosomal exocytosis. SARS-CoV-2 ORF3a facilitates lysosomal targeting of the BORC-ARL8b complex, which mediates trafficking of lysosomes to the vicinity of the plasma membrane, and exocytosis-related SNARE proteins. The Ca2+ channel TRPML3 is required for SARS-CoV-2 ORF3a-mediated lysosomal exocytosis. Expression of SARS-CoV-2 ORF3a greatly elevates extracellular viral release in cells infected with the coronavirus MHV-A59, which itself lacks ORF3a. In SARS-CoV-2 ORF3a, Ser171 and Trp193 are critical for promoting lysosomal exocytosis and blocking autophagy. When these residues are introduced into SARS-CoV ORF3a, it acquires the ability to promote lysosomal exocytosis and inhibit autophagy. Our results reveal a mechanism by which SARS-CoV-2 interacts with host factors to promote its extracellular egress.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Autofagia , Exocitosis , Lisosomas/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Proteínas Viroporinas/metabolismo , Liberación del Virus , Factores de Ribosilacion-ADP/genética , Animales , COVID-19/virología , Células HeLa , Humanos , Ratones , SARS-CoV-2/aislamiento & purificación , Canales de Potencial de Receptor Transitorio/genética , Proteínas Viroporinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA